Durée: 144 minutes

Algèbre linéaire Examen Partie commune Automne 2023

Enoncé

Pour les questions à **choix multiple**, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

Pour les questions de type **vrai-faux**, on comptera :

- +1 point si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs réponses,
- -1 point si la réponse est incorrecte.

Notation

- Pour une matrice A, a_{ij} désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur ${\pmb x} \in {\mathbb R}^n$, x_i désigne la i-ème composante de ${\pmb x}$.
- $-I_m$ désigne la matrice identité de taille $m \times m$.
- $-\mathbb{P}_n$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $-\mathbb{M}_{m\times n}(\mathbb{R})$ désigne l'espace vectoriel des matrices de taille $m\times n$ à coefficients réels.
- Pour $x, y \in \mathbb{R}^n$, le produit scalaire euclidien est défini par $x \cdot y = x_1 y_1 + \ldots + x_n y_n$
- Pour $\boldsymbol{x} \in \mathbb{R}^n$, la norme euclidienne est définie par $\|\boldsymbol{x}\| = \sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}$.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1: La matrice

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$

possède une décomposition QR telle que

$$r_{12} = 0.$$
 $r_{12} = \frac{1}{2}\sqrt{2}.$

Question 2: Soient

$$\mathcal{B} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\} \quad \text{et} \quad \mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} \right\}$$

deux bases de \mathbb{R}^3 . Soit P la matrice de changement de base de la base \mathcal{B} vers la base \mathcal{C} , telle que $[x]_{\mathcal{C}} = P[x]_{\mathcal{B}}$ pour tout $x \in \mathbb{R}^3$. Alors la deuxième ligne de P est

$$\begin{bmatrix}
 1 & 0 & 1
 \end{bmatrix}.
 \begin{bmatrix}
 1 & 1 & -1
 \end{bmatrix}.
 \begin{bmatrix}
 1 & 1 & -1
 \end{bmatrix}.
 \begin{bmatrix}
 1 & 0 & 1
 \end{bmatrix}.
 \begin{bmatrix}
 1 & 0 & 1
 \end{bmatrix}.$$

Question 3: Soit

$$A = \begin{pmatrix} 0 & 0 & 0 & 3 & 0 \\ 2 & \sqrt{3} & \pi & 3 & \sqrt{2} \\ 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & \pi & 3 & \sqrt{2} \\ \sqrt{3} & 1 & \pi & 3 & \sqrt{2} \end{pmatrix}.$$

Alors

Question 4: La droite de régression linéaire pour les points (-3, -7), (-2, -3), (0, 3), (3, 7) est

Question 5: Soit $\mathcal{B} = \{2-t, t+t^2, -1+t^3, -1-t+2t^2\}$ une base de \mathbb{P}_3 . La quatrième coordonnée du polynôme $p(t) = t + 2t^2 + 3t^3$ par rapport à la base \mathcal{B} est égale à

$$\square$$
 3. $\square -\frac{1}{7}$. $\square -7$. $\square \frac{1}{7}$.

Question 6: Soit

$$A = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 3 & -1 & 3 \\ -1 & 1 & 1 \end{array}\right).$$

Les valeurs propres de A sont

-3 et 2.

-2 et 3.

-1 et 2.

-1 et 1.

Question 7: Soient

$$m{w}_1 = egin{pmatrix} 2 \\ 1 \\ 3 \\ -1 \\ 1 \end{pmatrix}, \quad m{w}_2 = egin{pmatrix} -2 \\ 3 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \quad m{w}_3 = egin{pmatrix} 0 \\ 4 \\ 0 \\ 4 \\ 0 \end{pmatrix}, \quad m{y} = egin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad ext{et} \quad m{b} = egin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{pmatrix}.$$

Si **b** est la projection orthogonale de y sur $W = \text{Vect}\{w_1, w_2, w_3\}$, alors

 $b_3 = 20.$

 $b_3 = \frac{1}{8}$.

 $b_3 = 14.$

Question 8: Soient

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{et} \quad \boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

Si $\hat{x} = \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}$ est une solution de l'équation Ax = b au sens des moindres carrés, alors l'erreur de l'approximation de \boldsymbol{b} par $A\widehat{\boldsymbol{x}}$ est

 $||\mathbf{b} - A\widehat{\mathbf{x}}|| = \sqrt{2}.$

Question 9: Le système d'équations linéaires

$$\begin{cases} x_1 + 2x_2 + 5x_3 - 4x_4 = 0 \\ x_2 + 2x_3 + x_4 = 7 \\ x_2 + 3x_3 - 5x_4 = -4 \\ 2x_1 + 3x_2 + 4x_3 - 3x_4 = 1 \end{cases}$$

possède une solution unique telle que

 $x_1 = 3.$

 $x_1 = 2.$

 $x_1 = -3.$

Question 10: Soit

$$A = \begin{pmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 5 & -1 \\ 1 & -1 & 2 & 2 \\ 3 & 1 & 0 & 1 \end{pmatrix}.$$

Alors l'inverse $B = A^{-1}$ de la matrice A est tel que

 $b_{33} = \frac{4}{20}$.

 $b_{33} = -\frac{1}{12}$.

Question 11: Soit W l'espace vectoriel des matrices symétriques de taille 2×2 et soit $T\colon \mathbb{P}_2 \to W$ l'application linéaire définie par

$$T(a+bt+ct^2) = \begin{pmatrix} a & b-c \\ b-c & a+b+c \end{pmatrix}$$
 pour tout $a,b,c \in \mathbb{R}$.

Soient

$$\mathcal{B} = \left\{ 1, 1 - t, t + t^2 \right\} \qquad \text{et} \qquad \mathcal{C} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

des bases de \mathbb{P}_2 et W respectivement. La matrice A associée à T relative à la base \mathcal{B} de \mathbb{P}_2 et la base \mathcal{C} de W, telle que $[T(p)]_{\mathcal{C}} = A[p]_{\mathcal{B}}$ pour tout $p \in \mathbb{P}_2$, est

Question 12: La matrice

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

		_			
est inversible et diage	onalis	able			
n'est ni inversible ni	diago	nalis	sable	·.	
est diagonalisable ma	ais pa	s inv	ersil	ole.	
Question 13: Soit $A =$	$\int 2$	0	3	0	
Ouestion 13: Soit $A =$	1	2	1	0	Alors
adestion 10. Son 11	0	0	3	0	. 111015
	0 /	0	0	4 J	

est inversible mais pas diagonalisable.

toutes les valeurs propres de
$$A$$
 ont la même multiplicité géométrique.

 $\lambda = 4$ est une valeur propre de A avec multiplicité algébrique 2.

toutes les valeurs propres de A ont la même multiplicité algébrique.

 $\lambda = 2$ est une valeur propre de A avec multiplicité géométrique 2.

Question 14: Soit $T: \mathbb{R}^2 \to \mathbb{R}^4$ l'application linéaire définie par

$$T\left(\left(\begin{array}{c} x\\y \end{array}\right)\right) = \left(\begin{array}{c} x-y\\x-y\\-5x+6y\\x+y \end{array}\right).$$

Alors

T	est injective mais pas surjective.
T	est injective et surjective.
T	n'est ni injective ni surjective.
T	est surjective mais pas injective.

Question 15: L'algorithme de Gram-Schmidt appliqué aux colonnes de la matrice

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -2 \end{pmatrix}$$

fournit une base orthogonale de Img(A) donnée par les vecteurs

$$\square \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \\ -2 \end{pmatrix}.$$

$$\square \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 3 \\ -2 \end{pmatrix}.$$

$$\square \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

$$\square \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 2 \\ 1 \end{pmatrix}.$$

Deuxième partie, questions de type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire si elle est parfois fausse).

Question 16: Soit W un sous-espace	e vectoriel de \mathbb{R}^n	et soient u et v deux vecteurs de \mathbb{R}^n .
Si $u \in W$, alors le produit scalaire euc projection orthogonale de v sur W .	elidien entre u et	$oldsymbol{v}$ est égal au produit scalaire euclidien entre $oldsymbol{u}$ et la
	☐ VRAI	☐ FAUX
Question 17: Soit $T: \mathbb{P}_6 \to \mathbb{M}_{3\times 2}(\mathbb{P}_6)$ et $T(p) = T(q)$.	$\mathbb{R})$ une application	on linéaire. Alors il existe $p,q\in\mathbb{P}_6$ tels que $p\neq q$
	☐ VRAI	☐ FAUX
Question 18: Soit $\left\{ m{b}_1, \dots, m{b}_m \right\}$ une $Am{x} = m{b}_k$ possède au moins une solution		A est une matrice de taille $m \times n$ telle que l'équation $1, \ldots, m$, alors $\mathrm{Img}(A) = \mathbb{R}^m$.
	☐ VRAI	☐ FAUX
Question 19: Si u_1, \ldots, u_k sont de Vect $\{u_1, \ldots, u_k\}$ est un sous-espace		onormés de \mathbb{R}^n , alors le complément orthogonal de dimension $n-k$.
	☐ VRAI	☐ FAUX
Question 20: Si A et B sont deux mulle, alors $A + B$ est aussi inversible.	natrices inversible	s de taille $n \times n$ telles que $A + B$ n'est pas la matrice
	☐ VRAI	☐ FAUX
Question 21: Soit $A \in \mathbb{M}_{4\times 4}(\mathbb{R})$ une dants dans \mathbb{R}^4 , alors $A\boldsymbol{u}, A\boldsymbol{v}, A\boldsymbol{w}$ sont		3. Si $\pmb{u}, \pmb{v}, \pmb{w}$ sont des vecteurs linéairement indépenépendants dans $\mathbb{R}^4.$
	☐ VRAI	☐ FAUX
Question 22: Soit $A \in \mathbb{M}_{3\times 3}(\mathbb{R})$ und	e matrice diagona $\det(A^3) = -$	lisable avec valeurs propres $2, 3, -5$. Alors 27000 .
	☐ VRAI	☐ FAUX
Question 23: Soient V et W deux et Si $\dim(\operatorname{Ker} T) = \dim(V)$, alors $\operatorname{Img}(T)$		et soit $T\colon V\to W$ une application linéaire.
	☐ VRAI	☐ FAUX
_ -		m < n. Si la forme échelonnée réduite de A possède as du système homogène $A x = 0$ est un sous-espace
	☐ VRAI	☐ FAUX

Question 25: Soit A une matrice de taille $n \times n$ et soit $T \colon \mathbb{R}$	$\mathbb{R}^n \to \mathbb{R}^n$ l'application linéaire définie par						
$T(\mathbf{x}) = A\mathbf{x}$, pour tout $\mathbf{x} \in \mathbb{R}^n$. Si A est telle que $A^5 = 0$, alors T est surjective.							
□ VRAI □ FA	UX						
Question 26: Si $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ est une matrice symétrique, alors							
$\det(A - A^T) = \det(A) - \det($	A^{T}).						
☐ VRAI ☐ FA	UX						
Question 27: Soit q un polynôme de degré 3 quelconque. Alors l'ensemble							
$\left\{p\in\mathbb{P}_3:q(0)-p(0)=0\right.$	1}						
est un sous-espace vectoriel de \mathbb{P}_3 .							
□ VRAI □ FA	UX						
Question 28: Soit W le sous-espace vectoriel de \mathbb{P}_5 engendré par $p_1,p_2,p_3,p_4\in\mathbb{P}_5$. Si $\dim(W)=4$, alors il existe deux polynômes $p_5,p_6\in\mathbb{P}_5$ tels que la famille $\mathcal{B}=\{p_1,p_2,p_3,p_4,p_5,p_6\}$ est une base de \mathbb{P}_5 .							
URAI FA	UX						

Troisième partie, questions de type ouvert

- Répondre dans l'espace dédié en utilisant un stylo (ou feutre fin) noir ou bleu foncé.
- Votre réponse doit être soigneusement justifiée: toutes les étapes de votre raisonnement doivent figurer dans votre réponse.
- Laisser libres les cases à cocher: elles sont réservées au correcteur.

Question 29: Cette question est notée sur 3 points.

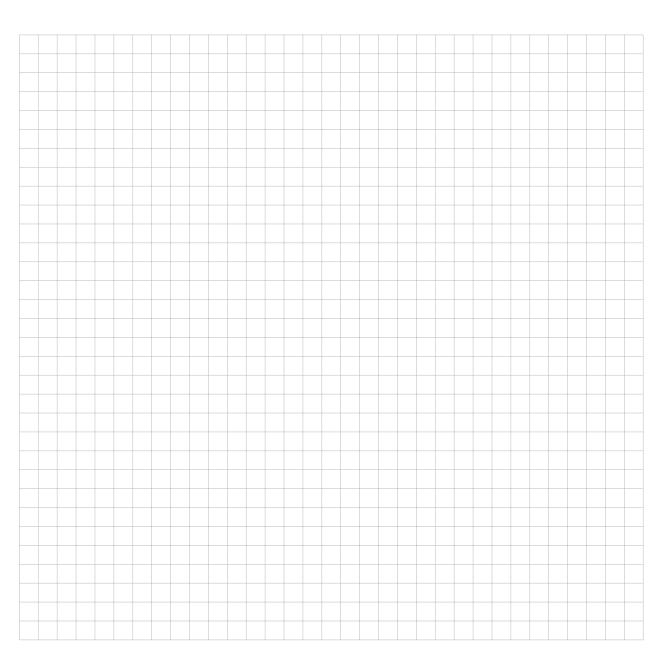
Soient $\textbf{\emph{v}}_1,\ldots,\textbf{\emph{v}}_n\in\mathbb{R}^n$ des vecteurs linéairement indépendants.

Soit A une matrice diagonalisable de taille $n \times n$ telle que v_1, \ldots, v_n sont des vecteurs propres de A associés aux valeurs propres $\alpha_1, \ldots, \alpha_n$ respectivement.

Soit B une matrice diagonalisable de taille $n \times n$ telle que v_1, \ldots, v_n sont des vecteurs propres de B associés aux valeurs propres β_1, \ldots, β_n respectivement.

Montrer que la matrice A-B est diagonalisable et satisfait

$$\det(A - B) = (\alpha_1 - \beta_1) \cdots (\alpha_n - \beta_n).$$



Soit A une matrice symétrique de taille 3×3 dont les valeurs propres sont

$$\lambda_1=2,\quad \lambda_2=-2\quad {\rm et}\quad \lambda_3=4\,.$$

Soit c un nombre réel et soient

$$m{v}_1 = \left(egin{array}{c} 1 \ 0 \ 1 \end{array}
ight), \quad m{v}_2 = \left(egin{array}{c} -1 \ 0 \ 1 \end{array}
ight) \quad ext{et} \quad m{v}_3 = \left(egin{array}{c} c \ 2 \ 0 \end{array}
ight)$$

des vecteurs propres de la matrice A associés aux valeurs propres $\lambda_1,\,\lambda_2$ et λ_3 respectivement.

Déterminer la valeur de c et construire la matrice A.

